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Abstract Two-dimensional (2D) inhomogeneous electron assemblies are becoming
increasingly important in Condensed Matter and associated technologies. Here, there-
fore, we contribute to the Density Functional Theory of such 2D electronic systems
by calculating, analytically, (i) the idempotent Dirac density matrix γ (r, r′) generated
by two closed shells for the bare Coulomb potential −Ze2/r and (ii) the exchange
energy density εx (r). Some progress is also possible concerning the exchange potential
Vx (r), one non-local approximation being the Slater potential 2εx (r)/n(r), with n(r)
the ground state electron density. However, to complete the theory of Vx (r), the func-
tional derivative of the single-particle kinetic energy per unit area δt (s)/δn(r) is still
required.
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1 Background and outline

The two-dimensional (2D) electron gas is by now quite well established experimen-
tally in a Ga As/AlGa As heterojunction. It has therefore become of considerable
importance to study, from first principles, the Density Functional Theory (DFT) of
the inhomogeneous electron assembly [1]. The present study is a contribution in this
area, and is also relevant to quantum dots.

Thus we shall, in Sect. 2 below, set up the idempotent Dirac density matrix [2]
γ (r, r′) defined in terms of the normalized Slater-Kohn-Sham orbitals [3,4] ψi (r) as

γ (r, r′) = 2
∑

occ

ψ∗
i (r)ψi (r′), (1)

generated by a (as yet unknown) self-consistent one-body potential V (r). The factor 2
in (1) indicates double occupation of each orbital. However, from the work of Howard
et al. [5], we shall have in mind ‘atomic ions’ in 2D with two closed shells, but now
generated in the limit of large nuclear charge Ze by the bare Coulomb potential

V (r) = − Ze2

r
. (2)

Then the Dirac matrix can be obtained analytically (see Eq. (13) below). This form
is then utilized in Sect. 3 to derive the exchange energy εx (r), also in analytic form,
which is physically valid in the non-relativistic limit of large Z .

In Sect. 4 it is explored whether the entire density matrix for closed shell is deter-
mined by its s-state (� = 0) component alone (a result proved in 3D by Theophilou
and March). Section 5 includes a summary of the main results of the present article
and some indications for future research.

2 Idempotent Dirac density matrix γ (r, r′) for two closed shells generated
by the bare Coulomb potential (2) in two dimensions

The wave functions for the 2D equivalent of the H -atom with nuclear charge Ze are
presently readily available. In the following, we have used the convenient treatmment
given by Zaslow and Zandler [6] summarized below. If one writes the wave function
in 2D generated by the potential (2) as

ψ(r, φ) = R(r)Φ(φ), (3)

then the angular functions are

Φ(φ) = 1√
2π

ei�φ, (4)
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where � = 0,±1,±2, . . . The radial equation for R(r) in 2D then reads

d2 R(r)

dr2 + 1

r

d R(r)

dr
+

[
2m

h̄2

(
E + Ze2

r

)
− �2

r2

]
R(r) = 0. (5)

Introducing, for β0 = 2m Ze2/h̄2 and the independent variable x , defined to be

x = βnr βn = β0

n − 1/2
, (6)

into the radial Eq. (5), solutions can be obtained in the form R(r) = χ(x)x |�|e−x/2,
provided χ(x) satisfies

x
d2χ(x)

dx2 + (2|�| + 1 − x)
dχ(x)

dx
+ (n − |�| − 1) χ(x) = 0. (7)

Equation (7) is satisfied by the associated Laguerre polynomials L p
k (x)where p = 2|�|

and k = n − |�| − 1. Since p and k must both be integers, with p ≤ k, n has values
1, 2, 3, . . . The energy levels E entering Eq. (5) are then given by

En = − m(Ze2)2

2(n − 1
2 )

2h̄2
, (8)

while the corresponding normalized wave functions ψn,�(r, φ) can be written

ψn,�(r, φ)=βn

[
(n − 1 − |�|)!

[(|�| + n − 1)!](2n − 1)

]1/2

e−βnr/2 (βnr)|�| L2|�|
n−|�|−1(βnr)

ei�φ

√
2π
.

(9)

2.1 Explicit form of Dirac matrix for two closed shells

The lowest closed shell in 2D corresponds to n = 1 and � = 0, with normalized wave
function

ψ1,0(r) = 2β0
e−β0r

√
2π

. (10)

The next spherically symmetric (and now degenerate) state corresponds to n = 2
and � = 0, with wave function

ψ2,0(r) = 2β0

3
√

6π

(
1 − 2

3
β0r

)
e− 1

3β0r . (11)
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Its degenerate partners are n = 2, � = ±1 with wave functions ψ2,±1(r, φ) given by

ψ2,±1(r, φ) = 2β2
0r

9
√

3π
e− 1

3β0r e±iφ. (12)

The Dirac matrix given in (1) for the Coulomb two closed shell case is

γ (r, r′) ≡ γ (r, φ; r ′, φ′) = 2[ψ1,0(r)ψ1,0(r
′)+ ψ2,0(r)ψ2,0(r

′)
+ψ∗

2,1(r, φ)ψ2,1(r
′, φ′)+ ψ∗

2,−1(r, φ)ψ2,−1(r
′, φ′)]

= 4β2
0

π

[
e−β0(r+r ′) + 1

27

(
1 − 2

3
β0r

)(
1 − 2

3
β0r ′

)
e− 1

3β0(r+r ′)

+ 4β2
0rr ′

243
e− 1

3β0(r+r ′) cos(φ − φ′)
]
. (13)

It is easily verified that the density

n(r) = γ (r, φ; r, φ) = 4β2
0

π

[
e−2β0r + 1

27

(
1 − 2

3
β0r

)2

e− 2
3β0r + 4β2

0

243
r2e− 2

3β0r

]

(14)

corresponds to the presence of 8 electrons.

3 Analytic form of exchange energy density

The exchange energy/unit area can be evaluated directly from (13) using

εx (r) = −e2

4

∫
γ 2(r, r′)
|r − r′| dr′, (15)

from which we obtain by insertion of Eq. (13) the result, in terms of the scaled variable
x = β0r ,

εx (r) = −16e2

π2 β3
0 e−2x/3[H1(x)+ H2(x)+ H3(x)], (16)

where

H1(x) =
∞∫

0

dt
te−2t/3

x + t

[
e−2(x+t)/3 + 1

27

(
1 − 2

3
x

) (
1 − 2

3
t

)]2

K
(

2

√
xt

x + t

)
,

(17)

H2(x) = 4

243

∞∫

0

dt
te−2t/3

x + t

[
e−2(x+t)/3 + 1

27

(
1 − 2

3
x

) (
1 − 2

3
t

)]
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Fig. 1 The normalized exchange energy per unit area −εx (r)/(16e2β3
0/π

2) versus β0r

×
[
(x2 + t2)K

(
2

√
xt

x + t

)
− (x + t)2E

(
2

√
xt

x + t

)]
, (18)

H3(x) = 1

6

(
4

243

)2 ∞∫

0

dt
te−2t/3

x + t

[
(x4 + 4x2t2 + t4)K

(
2

√
xt

x + t

)

−(x2 + t2)(x + t)2E
(

2

√
xt

x + t

)]
, (19)

where K and E are complete elliptic integrals of the first and second kind, respectively.
For r = 0, one readily finds that H1(0) = 515π/1, 944 and H2(0) = H3(0) = 0.

Indeed, εx (r) can be expressed explicitly in terms of modified Bessel functions, as
indicated in the “Appendix”; however, the result is quite complicated and so we pres-
ent the numerical value in Figs. 1, 2. For small r the density is dominated by the term
containing H1(x) and the approach in the Appendix gives

εx (r) = εx (0)[1 − 2β0r + 392

515
β2

0r2 log(β0r)+ O(r2)] (20)

with

εx (0) = −16e2β3
0

π2

515π

1, 944
. (21)
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Fig. 2 The quantity −2πrεx (r)/(16e2β2
0/π

2) versus β0r

For large values of r we must have

εx (r) → − e2

4r

∫
γ 2(r, r′)dr′ = − e2

2r
n(r). (22)

This is easily verified by explicit integration using (13), where n(r) is given in (14).
This relation is demonstrated in Fig. 3.

For a uniform two-dimensional electron gas of density n(r), the exact exchange
energy per unit area is [7]

εL D A
x (r) = −(e2/π2)(2πn(r))3/2. (23)

The local density approximation in this case, obtained by replacing n by n(r) in (14),
is illustrated in Fig. 4.

To conclude this section, we note that Eq. (16) has already embodied in it the
nuclear cusp condition on the exchange energy derived by March et al. [8] (see their
Eq. (3.18)). This appears to be the source of the nonanalytic behavior displayed in (17).

4 Relating to the Theophilou–March generalization for a two-dimensional
system: the Green function as a tool

It seems of interest, at this point, to discuss whether, as Theophilou and March [9]
found in three dimensions, the ‘spherical’ part of (13) is sufficient to determine the
total Dirac matrix (13). All important is whether key variables are again in 2D
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Fig. 3 Comparison of −εx (r)/(16e2β3
0/π

2) with (−e2/2r)
∫
γ 2(r, r′)dr′ (dashed curve), both versus

β0r
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Fig. 4 Comparison of the LDA (dashed curve) with the exact exchange energy, both versus β0r
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x = r + r ′ + |r − r′|, y = r + r ′ − |r − r′|. (24)

In this connection we note that (13) can be written

γ (r, r′) = n

(
r + r ′

2

)
− 8e2β4

0

243π
e− 2

3
(r+r ′)

2 |r − r′|2. (25)

The Dirac matrix is the two-sided inverse Laplace transform of the Green function

γ (r, r′) = lim
η→0+

c+i∞∫

c−i∞

ds

2π i
eηs G(r, r′; s), (26)

where [10]

G(r, r′; E) =
√

2m

ih̄2

e−πη

cosh(πη)

×
1+∫

∞

dz

2π i

(
z + 1

z − 1

)iη

eik(r+r ′)z cos[2k
√

rr ′ cos[(φ − φ′)/2]√z2 − 1]√
z2 − 1

,

(27)

or

G(x, y; E) = 2m

ih̄2 tanh(πη)

∞∫

0

du coth2iη(u/2)eik( x+y
2 ) cosh u cos[k√

xy sinh u].

(28)

Here k =
√

2m E/h̄2, η = m Ze2/kh̄2. The poles of G are η = (n − 1/2)i , giving
energy levels

En = − m(Ze2)2

2(n − 1/2)2h̄2 (29)

in agreement with (8). It thus appears that

G(r, r′; E) = G

(
x + y

2
,
√

xy; E

)
. (30)

We note for future reference that the � = 0 contribution to the Green function is (in
atomic units)

G0(r, r
′; E) = Γ (1/2 + a)√−2Err ′ W−a,0(2r>/a)M−a,0(2r</a), (31)
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where W and M denote Whittaker functions and a = (−2E)−1/2. As usual, r{>,<}
denotes {max, min} of r, r ′, respectively.

5 Summary and future directions

We have presented here an analytic derivation of the exchange energy density for two
closed shells generated by a bare Coulomb potential in two dimensions. The essential
ingredient in the calculation is the Dirac density matrix given in Eq. (13). In relation
to this quantity, it seemed of interest in Sect. 4 to explore whether a parallel existed
in 2D of the Theophilou-March 3D result: namely that the entire density matrix for
closed shell is determined by its s-state (� = 0) component alone. Though this result
is not directly generalizable to the 2D case of the bare Coulomb potential, it has led
us to the result (30) for the Green function, in terms of the key 2D variables x and y
introduced in Eq. (24). Finally, it is, of course, of considerable interest for the future
to study further the exchange potential Vx (r) given by the functional derivative of the
total exchange energy Ex = ∫

εx (r) dr with respect to the density n(r). To date, we
have only obtained the so-called Slater approximation to Vx (r), namely 2εx (r)/n(r).
To do so requires knowledge of the functional derivative of the single-particle kinetic
energy per unit area, which is an important problem for future study.
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Appendix

The integrals in Hj (x), j = 1, 2, 3 in (17)–(19) are all of the forms

Mn(a, x) =
∞∫

0

dt e−at tn

x + t
K

(
2
√

xt

x + t

)
= (−1)n

∂n

∂an
M0(a, x), (A.1)

Nn(a, x) =
∞∫

0

dt e−at tn

x + t
E

(
2
√

xt

x + t

)
= (−1)n

∂n

∂an
N0(a, x), (A.2)

which can be expressed as modified Bessel functions. For example, to evaluate
M0(a, x), we first make the substitution t = xk and then decompose the range of
integration [0,∞] = [0, 1] ∪ [1,∞]. In the first part we apply Landen’s transforma-
tion in the form

K

(
2
√

k

1 + k

)
= (1 + k)K(k) (A.3)
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and in the second part, first let k → 1/k and then apply (A.3). This results in [11]

M0(a, x) =
1∫

0

(
e−axk + k−1e−ax/k

)
K(k)dk = π

2
I0(ax/2)K0(ax/2). (A.4)

This is significant, in that K0(z) is logarithmically singular for z → 0. Consequently,
the exchange density is non-analytic for small r , as indicated in the text. Proceeding
in this way, the exact exchange energy density in terms of the scaled radius x

εx (r) = εx (0)x

[
2

515
e−4x/3h1(x)− 2

125145
e−2x/3h2(x)+ 486

515
e−2x h3(x)

]
,

(A.5)

where

h1(x) = I0

(
2x

3

) [
(8x2 − 6x + 9)K1

(
2x

3

)
+ (8x2 − 12x)K0

(
2x

3

)]

− I1

(
2x

3

) [
8x2 K1

(
2x

3

)
+ (8x2 − 6x + 9)K0

(
2x

3

)]
,

h2(x) = I1

( x

3

) [
(32x4 + 108x2 − 108x + 81)K0

( x

3

)

+ (32x4 + 48x3 + 216x2 + 54x)K1

( x

3

)]

− I0

( x

3

) [
(32x4 − 48x3 + 72x2 − 54x)K0

( x

3

)

+ (32x4 + 108x2 − 108x + 81)K1

( x

3

)]
,

h3(x) = I0(x)K1(x)− I1(x)K0(x).
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